9 research outputs found

    BWIBots: A platform for bridging the gap between AI and human–robot interaction research

    Get PDF
    Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human commands given in natural language, and (d) understand human intention from afar. The article concludes with a look forward towards future research opportunities and applications enabled by the BWIBot platform

    Dynamically Constructed (PO)MDPs for Adaptive Robot Planning

    No full text
    To operate in human-robot coexisting environments, intelligent robots need to simultaneously reason with commonsense knowledge and plan under uncertainty. Markov decision processes (MDPs) and partially observable MDPs (POMDPs), are good at planning under uncertainty toward maximizing long-term rewards; P-LOG, a declarative programming language under Answer Set semantics, is strong in commonsense reasoning. In this paper, we present a novel algorithm called iCORPP to dynamically reason about, and construct (PO)MDPs using P-LOG. iCORPP successfully shields exogenous domain attributes from (PO)MDPs, which limits computational complexity and enables (PO)MDPs to adapt to the value changes these attributes produce. We conduct a number of experimental trials using two example problems in simulation and demonstrate iCORPP on a real robot. Results show significant improvements compared to competitive baselines

    Planning in Action Language BC while Learning Action Costs for Mobile Robots

    No full text
    The action language BC provides an elegant way of formalizing dynamic domains which involve indirect effects of actions and recursively defined fluents. In complex robot task planning domains, it may be necessary for robots to plan with incomplete information, and reason about indirect or recursive action effects. In this paper, we demonstrate how BC can be used for robot task planning to solve these issues. Additionally, action costs are incorporated with planning to produce optimal plans, and we estimate these costs from experience making planning adaptive. This paper presents the first application of BC on a real robot in a realistic domain, which involves human-robot interaction for knowledge acquisition, optimal plan generation to minimize navigation time, and learning for adaptive planning

    Contributory presentations/posters

    No full text
    corecore